413 research outputs found

    Electromagnetically Induced Transparency versus Nonlinear Faraday Effect. Coherent Control of the Light Beam Polarization

    Full text link
    We report on experimental and theoretical study of the nonlinear Faraday effect under conditions of electromagnetically induced transparency at the 5S1/25P3/25D5/2S_{1/2} \to 5P_{3/2} \to 5D_{5/2} two-photon transition in rubidium vapors. These transitions realize the inverted Y model which combines the Λ\Lambda and ladder systems. Strong nonlinearity allowing for large rotation angles of a probe beam tuned to the SPS\to P transition was obtained by creation of quantum superpositions of magnetic sublevels (Zeeman coherences) in the rubidium ground state (Λ\Lambda scheme). Additionally, electromagnetically induced transparency was accomplished in a ladder scheme by acting with an additional strong coupling laser on the PDP\to D transition. Under conditions of a two-photon resonance the rotation was significantly reduced, which is interpreted as a competition between the two processes. The effect was observed in sub-Gauss magnetic fields and could be used for efficient coherent control of generation of the ground-state coherences, e.g. for controlling the polarization state of the probe light.Comment: 7 pages, 12 figures, submitted to Phys. Rev.

    Tailoring quantum superpositions with linearly polarized amplitude-modulated light

    Full text link
    Amplitude-modulated nonlinear magneto-optical rotation is a powerful technique that offers a possibility of controllable generation of given quantum states. In this paper, we demonstrate creation and detection of specific ground-state magnetic-sublevel superpositions in 87^{87}Rb. By appropriate tuning of the modulation frequency and magnetic-field induction the efficiency of a given coherence generation is controlled. The processes are analyzed versus different experimental parameters.SComment: Submitted to Phys. Rev.

    Circularly polarized microwaves for magnetic resonance study in the GHz range: application to nitrogen-vacancy in diamonds

    Full text link
    The ability to create time-dependent magnetic fields of controlled polarization is essential for many experiments with magnetic resonance. We describe a microstrip circuit that allows us to generate strong magnetic field at microwave frequencies with arbitrary adjusted polarization. The circuit performance is demonstrated by applying it to an optically detected magnetic resonance and Rabi nutation experiments in nitrogen-vacancy color centers in diamond. Thanks to high efficiency of the proposed microstrip circuit and degree of circular polarization of 85% it is possible to address the specific spin states of a diamond sample using a low power microwave generator.Comment: 4 pages, 7 figures, nitrogen-vacancy, microwave circular polarization, spin-state addressin

    Coherent population oscillations with nitrogen-vacancy color centers in diamond

    Full text link
    We present results of our research on two-field (two-frequency) microwave spectroscopy in nitrogen-vacancy (NV-) color centers in a diamond. Both fields are tuned to transitions between the spin sublevels of the NV- ensemble in the 3A2 ground state (one field has a fixed frequency while the second one is scanned). Particular attention is focused on the case where two microwaves fields drive the same transition between two NV- ground state sublevels (ms=0 -> ms=+1). In this case, the observed spectra exhibit a complex narrow structure composed of three Lorentzian resonances positioned at the pump-field frequency. The resonance widths and amplitudes depend on the lifetimes of the levels involved in the transition. We attribute the spectra to coherent population oscillations induced by the two nearly degenerate microwave fields, which we have also observed in real time. The observations agree well with a theoretical model and can be useful for investigation of the NV relaxation mechanisms.Comment: 17 page

    Analysis and calibration of absorptive images of Bose-Einstein condensate at non-zero temperatures

    Full text link
    We describe the method allowing quantitative interpretation of absorptive images of mixtures of BEC and thermal atoms which reduces possible systematic errors associated with evaluation of the contribution of each fraction. By using known temperature dependence of the BEC fraction, the analysis allows precise calibration of the fitting results. The developed method is verified in two different measurements and compares well with theoretical calculations and with measurements performed by another group.Comment: 17 pages, 8 figure

    How do you know if you ran through a wall?

    Full text link
    Stable topological defects of light (pseudo)scalar fields can contribute to the Universe's dark energy and dark matter. Currently the combination of gravitational and cosmological constraints provides the best limits on such a possibility. We take an example of domain walls generated by an axion-like field with a coupling to the spins of standard-model particles, and show that if the galactic environment contains a network of such walls, terrestrial experiments aimed at detection of wall-crossing events are realistic. In particular, a geographically separated but time-synchronized network of sensitive atomic magnetometers can detect a wall crossing and probe a range of model parameters currently unconstrained by astrophysical observations and gravitational experiments.Comment: 5 pages, 2 figure; to appear in the PR

    Microwave saturation spectroscopy of nitrogen-vacancy ensembles in diamond

    Full text link
    Negatively-charged nitrogen-vacancy (NV^-) centers in diamond have generated much recent interest for their use in sensing. The sensitivity improves when the NV ground-state microwave transitions are narrow, but these transitions suffer from inhomogeneous broadening, especially in high-density NV ensembles. To better understand and remove the sources of broadening, we demonstrate room-temperature spectral "hole burning" of the NV ground-state transitions. We find that hole burning removes the broadening caused by magnetic fields from 13^{13}C nuclei and demonstrate that it can be used for magnetic-field-insensitive thermometry.Comment: Main text: 5 pages, 4 figures. Supplement: 6 pages, 3 figure

    Local Finite Element Approximation of Sobolev Differential Forms

    Full text link
    We address fundamental aspects in the approximation theory of vector-valued finite element methods, using finite element exterior calculus as a unifying framework. We generalize the Cl\'ement interpolant and the Scott-Zhang interpolant to finite element differential forms, and we derive a broken Bramble-Hilbert Lemma. Our interpolants require only minimal smoothness assumptions and respect partial boundary conditions. This permits us to state local error estimates in terms of the mesh size. Our theoretical results apply to curl-conforming and divergence-conforming finite element methods over simplicial triangulations.Comment: 22 pages. Comments welcom
    corecore